eBPF 101

An overview from a perspective of a non-kernel programmer

Muhammad Falak R Wani
falakreyaz@gmail.com

Linux Conf Au 2022

Q@vimfrw eBPF 101

falakreyaz@gmail.com

1

whoami

| admit | am an imposter?

Essential guide to Linux kernel without undeystanding it

Pretending to be a
Linux kernel expert
The definitive guide

(o) RLY7 Cong Wang

!mfrw.github.io
2Pretending to be a Linux Kernel Expert

Q@vimfrw eBPF 101

https://mfrw.github.io
https://medium.com/@c0ngwang/how-to-pretend-to-be-a-linux-kernel-expert-b1ca21ac6384

© History
@ Motivation
@ Problem
@ Solution — BPF

© Foundations
@ eBPF Architecture
@ eBPF Prog Types
e eBPF Maps

© Conclusion

Q@vimfrw eBPF 101 LCA 22 3/22

© History
@ Motivation
@ Problem

@ Solution — BPF

Q@vimfrw eBPF 101

Let's design a Packet Filter

How hard can that be?

° Copy €ve ryth I ng User applications
| USER
tO User—Spa ce GNU C Library (glibc) m
i System Call Interface
o Write a Kernel KERNEL - e
M Od u Ie Architecture-Dependent Kernel Code

Hardware platform

Q@vimfrw eBPF 101

What is the Problem?

User Space vs Kernel Space Trade Off

User Space Kernel Space
@ We copy every packet to User @ Hardcoding what packets that
Space which is not the most we are interested in is not a

optimal solution. generic solution

Copies everything. Copy only what we want.

Not a Generic Solution.

°
Not Optimal Performance. e Optimal Performance.
Generic Solution. °

°

SAFE — SEGFAULT. UNSAFE - System down.

Qvimfrw eBPF 101 LCA 22 6/22

What is the Problem?

User Space vs Kernel Space Trade Off

User Space Kernel Space

@ We copy every packet to User @ Hardcoding what packets that
Space which is not the most we are interested in is not a
optimal solution. generic solution

o Copies everything. o Copy only what we want.

@ Not Optimal Performance. e Optimal Performance.

e Generic Solution. @ Not a Generic Solution.

o SAFE — SEGFAULT. @ UNSAFE - System down.

What if we had best of both the worlds 7
— Anonymous EngineerJ

Q@vimfrw eBPF 101 LCA 22 6/22

BPF

A seminal paper published in 1992

The BSD Packet Filter:
A New Architecture for User-level Packet Capture*

Steven McCanne' and Van Jacobsont
Lawrence Berkeley Laboratory
One Cyclotron Road
Berkeley, CA 94720
mecanne@ee.lbl.gov, van@ee.lbl.gov

December 19, 1992

Abstract

Many versions of Unix provide facilities for user-level packet
capture, making possible the use of general purpose work-
stations for network monitoring. Because network monitors
run as user-level processes, packets must be copied across the
kernel/user-space protection boundary. This copying can be
minimized by deploying a kernel agent called a packet filter,
which discards unwanted packets as carly as possible. The
original Unix packet filter was designed around a stack-based
filter evaluator that performs sub-optimally on current RISC
CPUs. The BSD Packet Filter (BPF) uses a new, register-
based filter evaluator that is up to 20 times faster than the
original design. BPF also uses a straightforward buffering
strategy that makes its overall performance up to 100 times
faster than Sun’s NIT running on the same hardware.

SunOS, the Ultrix Packet Filter{2] in DEC’s Ultrix and Snoop
in SGI's IRIX.

These kernel facilities derive from pioneering work done at
CMU and Stanford to adapt the Xerox Alto ‘packet filter’ toa
Unix kernel[8]. When completed in 1980, the CMU/Stanford
Packet Filter, CSPF, provided a much needed and widely used
facility. However on today’s machines its performance, and
the performance of its descendents, leave much to be de-
sired — a design that was entirely appropriate for a 64KB
PDP-11 is simply not a good match to a 16MB Sparcstation
2. This paper describes the BSD Packet Filter, BPF, a new
kernel architecture for packet capture. BPF offers substan-
tial performance improvement over existing packet capture
facilities—10 to 150 times faster than Sun’s NIT and 1.5 to 20
times faster than CSPF on the same hardware and traffic mix.
The performance increase is the result of two architectural
improvements:

BPF 101

BPF

A simple virtual machine residing in the kernel

Q@vim

opcodes addr modes

1db [k] [x+k]

1dh [k] [xt+k]

1d k| #len | M[k] | (k)] | [x+k]

ldx #k | #len | M[k] 4= | [k]alx£)

st M[k)

stx M[k]

jmp L

Jjeg #k, Lt, LE

Jjgt #k, Lt, LE

Jge #k, Lt, LE

s=at #k, Lt, Lf
#k x
ik x
ik x
ik x
$k x
$k x
#k x
ik x
ik a
eBPF 101

LCA 22

How Does a BPF program work?

Let's take a digression first

How do userspace programs work 7

Compiled

Write Code — Compiler + Linker — Run the Binary

Interpreted

Write Code — Interpreter — JIT instruction — execute JIT-ed instructions

But wait the BPF VM is in the kernel!

Q@vimfrw eBPF 101 LCA 22 9/22

BPF

How does a BPF program run ?

BPF a.k.a Classical BPF (cBPF) programs are STATELESS.

Hook points are only in the Network Stack.

@ Write a simple program (Filter) using
the ISA.

o Filter expressions return True/False. Li:
@ Load the ByteCode program in the L2
kernel. s

@ Attach the loaded program to a hook.
(e.g on every received packet) L4:
L5:

Programs are event driven and are run
to completion when the event occurs.

1dh
Jeq
1db
Jjeq
1dh
jset
ldx
1dh
Jjeq
ret

ret

[12]
#ETHERPROTO_IP, L1, L5
[23]

#IPPROTO_TCP, L2, L5
[20]

H#OX1£ff, L5, L3
4%([14]&0x1)

[x+16]

#N,L4,L5

#TRUE

#0

Load Byte Code — Interpreter — Attach to Hook — Run BPF — Action J

Q@vimfrw eBPF 101

Ideas Similar to BPF

Do not map 1:1 exactly — similar theme®

o Embeded lua VM in nginx to modify behaviour
without recompiling nginx or writing C.

o Embeded lua VM in neovim to write plugins and
extend functionality.

o Vimscript for VIM to extend functionality.

o Writing WebAssembly filters for envoy proxy.

o WebAssembly for browsers.

3None of them have a verifier
Qvimfrw eBPF 101 LCA 22 11/22

© Foundations
@ eBPF Architecture
@ eBPF Prog Types
o eBPF Maps

Q@vimfrw eBPF 101

eBPF Mascot

The cute Bee!

A eBPF

Q@vimfrw eBPF 101 LCA 22 13 /22

extended BPF

BPF VM in the Linux Kernel got improved vastly

Alexei Starovoitov sent a patch improving the existing BPF infrastructure
in the kernel and as a result BPF — eBPF.

author Alexei Starovoitov <ast@plumgrid.com= 2014-03-28 18:55:25 +0100
committer David S. Miller <davem@davemloftnet= 2014-03-31 00:45:09 -0400
commit bd4cfBed331a275e9bF5ad9e6d@Fd55dFFc551b8 (patch)

tres 6ffbl52%6cedcdclfav2e31bdd3a588408das88c

parent 77e8114a:%ae08685c583772a57aF21d299c6781 (diff)

download 1linux-bd4cf@ed33lal?SedbfSadfesd@fdSsdffes51b8.tar.gz

net: filter: rework/optimize internal BPF interpreter's instruction set

This patch replaces/reworks the kernel-internal BPF interpreter with
an optimized BPF instruction set format that is modelled closer to
mimic native instruction sets and is designed to be J1ITed with one to
one mapping. Thus, the new interpreter is noticeably faster than the
current implementation of sk_run_filter(); mainly for two reasons:

Q@vimfrw eBPF 101

extended BPF

eBPF is not limited to the network stack*

Recall cBPF had hooks only in the network stack. eBPF has hook points
all throughout the kernel.

Use Networking Security Observability &
c Tracing
ases
HeBPF bt #
Projects ?
[Crmang |
Weapr |0
ver HeBPF 3 cOG® =
Space SDKs Application
Verifier & JIT os Qenatiey
Runtime i
@’QBPF Maps HeBPF Netwark Sacunty
A= Load Bancng
Kernel Helper AP b2 T
Kernel Kernel Runtime

*Image Courtesy: ebpf.io

Q@vimfrw eBPF 101

http://ebpf.io

eBPF Capabilities

Having a secure VM in the kernel has endless possibilities °

| A .
Wearr HeBPE

- '

Networking Security

- Metrics —— -
- Histograms | ©BPF Tsr‘::; Process |
- Events Maps HeBPF
VES Kernel |
A eBPF P eBPF
Observability Tracing

SImage Courtesy: ebpf.io

Q@vimfrw eBPF 101

http://ebpf.io

eBPF Verifier & JIT

Loading and Attaching a eBPF program®

The bpf() syscall is a multi-tool which lets us load & attach an eBPF

program.

g

€BP! = e
Program =rp

’~_b| clang -target bpf \—,: Vlrlrogrrémr‘ :

Development

Maps |

Process

[HeBPF Go Library

] sendmsg() recvmsg()

Syscall
§ g WeBpF Verifier
ST R
— eBPF JIT Compiler
a B

Runtime

Slmage Courtesy: ebpf.io

Q@vimfrw

e
| » @eBpPF Sockets
TCP/IP

eBPF 101

http://ebpf.io

eBPF Program Types

Different kinds of eBPF programs

A non exhaustive list of BPF_PROG_*:

BPF_PROG_TYPE_SOCKET_FILTER: a packet filter
BPF_PROG_TYPE_XDP: a packet filter run from device driver rx path
BPF_PROG_TYPE_KPROBE: if a kprobe should fire or not
BPF_PROG_TYPE_TRACEPOINT: if a tracepoint should fire or not
BPF_PROG_TYPE_SOCK_OPS: set socket options

BPF_PROG._....

Q@vimfrw eBPF 101

eBPF MAPs

Saving State in eBPF Programs

Recall cBPF was entirely stateless. eBPF is stateless but has the capability
to access storage which are called eBPF MAPs. eBPF MAP is a generic
data structure that allows data to be passed back and forth withing the
kernel or between the user space and the kernel.

eBPF MAPS are created by the same bpf() syscall.

A few interesting BPF_MAP_TYPE_*:
e BPF_MAP_TYPE_HASH: an actual hash table
o BPF_MAP_TYPE_ARRAY: an array

o BPF_MAP_TYPE_PROG_ARRAY: an array of fd's corresponding to
eBPF programs.

e BPF_MAP_TYPE....

Q@vimfrw eBPF 101

© Conclusion

Q@vimfrw eBPF 101

Conclusion

o eBPF programs run in response to events.
o eBPF programs run to completion.

o Running an eBPF program is much safer than running
and maintaining a kernel-module.

o The entry bar to get useful information from the
kernel is significantly reduced.

o The overhead of observability is applicable only when
you run dynamic instrumentation.

Q@vimfrw eBPF 101 LCA 22 21/22

Thank You!

	History
	Motivation
	Problem
	Solution – BPF

	Foundations
	eBPF Architecture
	eBPF Prog Types
	eBPF Maps

	Conclusion

