
CPU Namespace
A mechanism to isolate CPU topology information in the Linux kernel

Pratik Rajesh Sampat <pratik.sampat@in.ibm.com>
Gautham R. Shenoy <gautham.shenoy@amd.com>

January 14, 2022

mailto:pratik.sampat@in.ibm.com
mailto:gautham.shenoy@amd.com

Outline

2

N°1

Motivation
Purpose of sysfs in the world of
containers

N°2

Existing Solutions
Existing cgroup interface,
LXCFS, New Proc interfaces,

N°3

CPU namespace

N°4

Experimental Results

N°5

Challenges and Future

Motivation

3

N°1

Sysfs in the world of containers

4

● Sysfs: Pseudo filesystem that can expose kernel information to userspace such as information about kernel

subsystems and hardware

● Applications determine system resources and usage:- sys and procfs

● Containerized applications can be restricted via cgroups cpuset. However, unaware of these restrictions

can still look at traditional interfaces for information

● Problem also exists outside the realm of containers.

○ Ex: taskset => sched_get/setaffinity() can set CPU restrictions on applications but applications can

still make decisions based on traditional interfaces

What does sysfs and procfs really mean in the context of container restriction?

What are the implications of exposing this information when applications can only use a subset of them?

N°1 - Motivation

Implication: inconsistency of information

5

Host

CPUs = 128

Container
A

CPUs = 4

sysfs
/sys/devices/
system/cpu/*

lscpu => 0-127
CPUs

cpuset-cpus =
32-35

procfs
/proc/stat

top => 0-127 CPUs

cgroupfs
/sys/fs/cgroup/

cpuset.cpus
=> 32-35 CPUs

syscall
sched_getaffinity() => 32-35

CPUs

The control and the display

interface is fairly disjoint with

each other.

Restrictions can be set through

control interfaces like cgroups

cpuset, however applications

can view multiple interfaces to

retrieve CPU information and

make decisions based on it.

N°1 - Motivation

Implication: fair use

In the context of a restricted container in a multi-tenant system, should all the information about the

topology be available for the container to see?

Can this information potentially be misused?

N°1 - Motivation

Socket 0 Socket 1

G
P
U

Socket 0 Socket 1Faster

Slower

Migrate

● Could a user schedule workloads across sockets such

that the bus is flooded and other container tenants

experience slowdown?

● Could a user identify its vicinity from peripheral such as

GPUs and schedule themselves closer to get latency

advantage compared to the rest of workloads?

6

Existing Solutions

7

N°2

8

Just look at cgroupfs!

If you need information about your

restrictions look at the interface that

restricts it

A lot of applications legacy and

otherwise rely on traditional

interfaces like sys and proc

Need to interpret concepts like

period-quota(time) in terms of

threads(space) to spawn

While cgroups can be used to extract

information, in crux they are a

control mechanism for the host

rather than a display interface inside

the container

Userspace solution: LXCFS

Userspace file system that bind-mounts

over the existing sys and procfs to provides

consistent information in accordance to

current restrictions

A cgroupfs-like tree which is container

aware

Light, easy to use userspace tool.

Currently in use with Kubernetes as

described by Google Anthos[1] and

Alibaba Cloud[2]

Needs explicit setup for applications

that experience the effects of

incorrect information

Other proposed In-kernel solution

A RFC patchset[3] which added
/proc/self/meminfo respecting cgroup
restrictions for the memory consistency
problem.

Introduces standards for exposing
and interpreting information

A clean new interface. Does not
break any assumptions of the
already established by sys and proc

A sizable number of applications still
look at sys and proc instead of
cgroup, motivation to use this new
interface may be low. A comment[4]
highlights of the same as well.

Existing Solutions

+

-

/

/

+

-

+

+

/

N°2 - Existing solutions

https://cloud.google.com/blog/products/containers-kubernetes/migrate-for-anthos-streamlines-legacy-java-app-modernization
https://www.alibabacloud.com/blog/kubernetes-demystified-using-lxcfs-to-improve-container-resource-visibility_594109
https://lore.kernel.org/lkml/ac070cd90c0d45b7a554366f235262fa5c566435.1622716926.git.legion@kernel.org/
https://lore.kernel.org/lkml/20210615113222.edzkaqfvrris4nth@wittgenstein/

9

Just look at cgroupfs!

Present information about

restrictions

Existing Solutions

N°2 - Existing solutions

Userspace solution: LXCFS

Userspace file system that bind-mounts

over the existing sys and procfs to provides

consistent information in accordance to

current restrictions

A cgroupfs-like tree which is container

aware

Light, easy to use userspace tool.

Currently in use with Kubernetes as

described by Google Anthos[1] and

Alibaba Cloud[2]

Needs explicit setup for applications

that experience the effects of

incorrect information

+

-

Other proposed In-kernel solution

A RFC patchset[3] which added
/proc/self/meminfo respecting cgroup
restrictions for the memory consistency
problem.

Introduces standards for exposing
and interpreting information

A clean new interface. Does not
break any assumptions of the
already established by sys and proc

A sizable number of applications still
look at sys and proc instead of
cgroup, motivation to use this new
interface may be low. A comment[4]
highlights of the same as well.

+

+

/

https://cloud.google.com/blog/products/containers-kubernetes/migrate-for-anthos-streamlines-legacy-java-app-modernization
https://www.alibabacloud.com/blog/kubernetes-demystified-using-lxcfs-to-improve-container-resource-visibility_594109
https://lore.kernel.org/lkml/ac070cd90c0d45b7a554366f235262fa5c566435.1622716926.git.legion@kernel.org/
https://lore.kernel.org/lkml/20210615113222.edzkaqfvrris4nth@wittgenstein/

10

Just look at cgroupfs!

Present information about

restrictions

Userspace solution: LXCFS

Consistently with all existing

interfaces

Existing Solutions

N°2 - Existing solutions

Other proposed In-kernel solution

A RFC patchset[3] which added
/proc/self/meminfo respecting cgroup
restrictions for the memory consistency
problem.

Introduces standards for exposing
and interpreting information

A clean new interface. Does not
break any assumptions of the
already established by sys and proc

A sizable number of applications still
look at sys and proc instead of
cgroup, motivation to use this new
interface may be low. A comment[4]
highlights of the same as well.

+

+

/

https://lore.kernel.org/lkml/ac070cd90c0d45b7a554366f235262fa5c566435.1622716926.git.legion@kernel.org/
https://lore.kernel.org/lkml/20210615113222.edzkaqfvrris4nth@wittgenstein/

11

Just look at cgroupfs!

Present information about

restrictions

Userspace solution: LXCFS

Consistently with all existing

interfaces

Other proposed In-kernel solution

Introduces standardization by an

In-kernel solution

Existing Solutions

N°2 - Existing solutions

CPU Namespace

12

N°3

CPU namespace[5]

13

A mechanism that isolates CPU

information for each task and

presents restrictions consistently with

all the control and display interfaces.

The translation of CPU information is

maintained by a scrambled map of

namespace CPUs to Logical CPUs.

Eg. real CPU 32 => ns CPU 5 Host

CPUs = 128

Container
CPUs=4

sysfs
lscpu =>

5,12,21,23

cpuset-
cpus =
32-35 procfs

top =>
5,12,21,23

cgroupfs
/sys/fs/cgroup/

cpuset.cpus
=> 5,12,21,23

syscall
sched_getaffinity()

=> 5,12,21,23CPU
NS

Host

CPUs = 128

Container
CPUs=4

sysfs
lscpu => 0-127

cpuset-cpus =
32-35

procfs
top => 0-127

cgroupfs
/sys/fs/cgroup/

cpuset.cpus
=> 32-35

syscall
sched_getaffinity()

=> 32-35

Without CPU
namespace

With CPU
namespace

N°3 - CPU Namespace

ns CPUs
5,12,21,23

real CPUs
32,33,34,35

https://lore.kernel.org/lkml/20211009151243.8825-1-psampat@linux.ibm.com/

Experimental Results
Machine: IBM Power 9 - 44 SMT4 Cores => 176 CPUs

14

N°4

Experiment

15

● Benchmarking nginx (HTTP server) with a multithreaded workload called wrk (HTTP load generator)

● Nginx is configured with worker_processes auto; to enable the application to manage resources based on the

system configuration

● The nginx container is configured to cpuset to 4 CPUs

● The wrk benchmark spawns 500 requests in

30 seconds for 4 threads

Metrics of Measurement:

Vanilla 5.14 vs CPU namespace 5.14

● Memory usage: init and peak - Lower is better

● Cgroup CPU Throttle % - Lower is better

● Workload: Latency - Lower is better

● Workload: Requests/sec - Higher is better

● Number of PIDs/threads spawned - Lower is better

N°4 - Experimental Results

Results

16

Vanilla kernel - 5.14

 5.14 + CPU namespace

Demo

17N°4 - Experimental Results

http://www.youtube.com/watch?v=Jvp072IwPpk

Challenges and Future

18

N°5

Challenges with the current design

19

● Until now namespaces and cgroups have been fairly disjoint from one another. CPU namespace breaks

that. Without the CPU/CPUSet cgroup the CPU namespace loses its meaning.

● The current design only addresses restriction in space and not time. Containers also frequently use cfs

periods and quota in the form of millicores. How does the information need to be exposed for these

restrictions?

● While CPU namespace mitigates the potential misuse stemming from the knowledge of topology by

obfuscation of information, the topology can still be roughly figured out with IPI latencies to determine

siblings or far away cores.

N°5 - Challenges and future

Future

● The intention is to spark a discussion on the problem rather than to be a know all and end solution

● If the solution is for applications to change and look at cgroupfs, there are exciting discussions[6] around

exporting more useful metrics to entice applications to change

● If the solution is external userspace programs bind-mounting custom sys and procs then should that be

the norm for the future as well?

20

https://lore.kernel.org/lkml/YW2g73Lwmrhjg%2Fsv@slm.duckdns.org/

Legal

● This work represents the view of the authors and does not necessarily represent the view of the

employers (IBM, AMD)

● Author Gautham R. Shenoy’s contributions were while he was working at IBM

● IBM and IBM (Logo) are trademarks or registered trademarks of International Business Machines in

United States and/or other countries.

● Linux is a registered trademark of Linus Torvalds.

● Other company, product and service names may be trademarks or service marks of others

21N°5 - Challenges and future

References

22

1. LXCFS - Google Anthos use-case:

https://cloud.google.com/blog/products/containers-kubernetes/migrate-for-anthos-streamlines-legacy-java-app-moderniz

ation

2. LXCFS - Alibaba use- case:

https://www.alibabacloud.com/blog/kubernetes-demystified-using-lxcfs-to-improve-container-resource-visibility_594109

3. In-kernel solution - /proc/self/meminfo:

https://lore.kernel.org/lkml/ac070cd90c0d45b7a554366f235262fa5c566435.1622716926.git.legion@kernel.org/

4. In-kernel solution review comment - /proc/self/meminfo:

https://lore.kernel.org/lkml/20210615113222.edzkaqfvrris4nth@wittgenstein/

5. CPU namespace patches: https://lore.kernel.org/lkml/20211009151243.8825-1-psampat@linux.ibm.com/

6. Comment suggesting introducing more metrics in cgroups:

https://lore.kernel.org/lkml/YW2g73Lwmrhjg%2Fsv@slm.duckdns.org/

7. CPU namespace phoronix article: https://www.phoronix.com/scan.php?page=news_item&px=Linux-CPU-Namespace

https://cloud.google.com/blog/products/containers-kubernetes/migrate-for-anthos-streamlines-legacy-java-app-modernization
https://cloud.google.com/blog/products/containers-kubernetes/migrate-for-anthos-streamlines-legacy-java-app-modernization
https://www.alibabacloud.com/blog/kubernetes-demystified-using-lxcfs-to-improve-container-resource-visibility_594109
https://lore.kernel.org/lkml/ac070cd90c0d45b7a554366f235262fa5c566435.1622716926.git.legion@kernel.org/
https://lore.kernel.org/lkml/20210615113222.edzkaqfvrris4nth@wittgenstein/
https://lore.kernel.org/lkml/20211009151243.8825-1-psampat@linux.ibm.com/
https://lore.kernel.org/lkml/YW2g73Lwmrhjg%2Fsv@slm.duckdns.org/
https://www.phoronix.com/scan.php?page=news_item&px=Linux-CPU-Namespace

Thank you!

24

Additional information

CPU namespace - Design

25

vCPU = 3

CPUns A

nsCPU = 14

Parent

Child

CPUns B

nsCPU = 21

Virtualization of CPU information is created by a scrambled

map of namespace CPUs to Logical CPUs.

The virtualization make a flat hierarchy of 1:1 mappings. Thus

making translations O(1)

More information about design posted here:

pratiksampat.github.io/cpu_namespace.html

N°3 - CPU Namespace

task_struct
…

nr_cpus_allowed;
*cpus_ptr;

cpus_mask;
…

nsproxy

nsproxy
…

mnt_ns
…

cpu_ns

CPU namespace
…

virtual cpuset_cpus;
translational_map[] = nscpu->vcpu

parent_cpu_namespace;

http://pratiksampat.github.io/cpu_namespace.html

CPU namespace - Block example

26

