KUnit;
Past, Present, and Future

David Gow <davidgow@google.com>

&

What is KUnit?

What is KUnit?

e A unit testing framework for the Linux Kernel
o Aimed at 'in-kernel' testing
o Tooling to make writing and running tests easier.

e Designed for small, fast, self-contained tests
o Think "a single kernel function”

e An effort to standardise such tests
o Tests produce a common, machine parsable (K)TAP output format

e Can be run under any kernel architecture
o Either built-in to the kernel to run at startup, or as a module
o Can be run (with provided tooling) under User-Mode Linux (UML), as a normal x86-64 Linux
binary
m Allows for extremely fast testing!

Where is KUnit?

e KUnitis included in Linux 5.5+

o KUnit and KUnit tests can be enabled with Kconfig entries.

o e.g. CONFIG_KUNIT and CONFIG_KUNIT_ALL_TESTS

o A python wrapper which configures, builds, runs, and parses results included
m ./tools/testing/kunit/kunit.py run

o The in-kernel test framework lives:
m lib/kunit/

o Tests sit alongside the code being tested
m (typically in a file ending _kunit.c, building a <thing>_kunit.ko module)

e KUnit documentation:
o Documentation/dev-tools/kunit/index.rst
o KUnit's website: https://kunit.dev/

https://www.kernel.org/doc/html/latest/dev-tools/kunit/index.html
https://kunit.dev/

How are tests structured?

e Atestis a single function:

o Runs some setup
o Runs the code under test
o Asserts the resultant state matches expectations

e Test suites:

o A collection of related tests.
o Can have shared initialisation / teardown code.

Example: list_test

lib/list-test.c:

static void list_test_list_ move_tail(struct kunit *test)

{

struct list_head a, b;
LIST_HEAD(list1);
LIST_HEAD(list2);

list_add_tail(&a, &list1);
list_add_tail(&b, &list2);

[* before: [list1] -> a, [list2] -> b */
list_move_tail(&a, &list2);

[* after: [list1] empty, [list2] -> b ->a */
KUNIT_EXPECT_TRUE(test, list_empty(&list1));
KUNIT_EXPECT_PTR_EQ(test, &b, list2.next);

KUNIT_EXPECT_PTR_EQ(test, &a, b.next);

Example: suites

static struct kunit_case list_test cases][] = {
KUNIT_CASE(list_test_list_init),
KUNIT_CASE(list_test_list add),
KUNIT_CASE(list_test_list_add_tail),

[...]
KUNIT_CASE(list_test list for_each prev_safe),
KUNIT_CASE(list_test_list for_each_entry),
KUNIT_CASE(list_test_list_for_each_entry_reverse),

{},
| »

static struct kunit_suite list_test_ module = {
.name = "list-kunit-test",
test_cases = list_test cases,

I3
kunit_test_suites(&list_test_module);

MODULE_LICENSE("GPL v2");

Running tests (with kunit_tool)

e Create a '.kunitconfig' file in the build directory ([srcdir]/.kunit by default)

o Include the config options you need for testing:
m CONFIG_KUNIT=y
m CONFIG_LIST_KUNIT_TEST=y

e Run ' /tools/testing/kunit/kunit.py run'

o If you want the raw kernel output in TAP format, rather than the parsed summary, use the
'--raw_output' option

Results (TAP format)

TAP version 14
1..1
Subtest: list-kunit-test
1..36
ok 1 - list_test list init
ok 2 - list_test list add
ok 3 - list_test_list_add_tail
ok 4 - list_test_list_del
ok 5 - list_test_list replace
ok 6 - list_test_list_replace_init
ok 7 - list_test_list swap
[...]
ok 35 - list_test_list for_each_entry
ok 36 - list_test_list for_each_entry reverse
ok 1 - list-kunit-test

TAP version 14
1.1
Subtest: list-kunit-test
1..36
ok 1 - list_test_list_init
ok 2 - list_test_list_add
ok 3 - list_test_list add_tail
ok 4 - list_test_list_del
ok 5 - list_test_list_replace
ok 6 - list_test_list_replace_init
ok 7 - list_test_list_ swap
list_test_list_del_init: EXPECTATION FAILED at
lib/list-test.c:161
Expected list_empty careful(&a) to be true, but is false
not ok 8 - list_test _list del_init
ok 9 - list_test_list_move
ok 10 - list_test_list_move_tail
ok 36 - list_test_list for_each_entry_reverse
not ok 1 - list-kunit-test

Results (kunit_tool)

[22:49:46] Configuring KUnit Kernel ..

[22:49:46] Building KUnit Kernel ..

[22:49:52] Starting KUnit Kernel ..

[22:49:57]

[22:49:57] ======== list-kunit-test ========
[22:49:57] list test list init

[22:49:57] list test list add

[22:49:57] list test list add tail
[22:49:57] list test list del

[22:49:57] list test list replace

[22:49:57] list test list replace_init
[22:49:57] list test list swap

[22:49:57] list test list del init
[22:49:57] list test_list move

[..]

[22:49:57] list test list for each
[22:49:57] list test list for each prev
[22:49:57] list test list for each safe
[22:49:57] list test list for each prev safe
[22:49:57] list test list for each entry
[22:49:57] list test_list for each_entry reverse
[22:49:57]

[22:49:57]

[22:49:57] Elapsed time: 10.216s total, 0.001ls

configuring, 6.069s building, 0.000s running

[22:41:59] Configuring KUnit Kernel ..

[22:41:59] Building KUnit Kernel ..

[22:42:03] Starting KUnit Kernel ..

[22:42:07]

[22:42:07] ======== [FAILED] list-kunit-test ========
[22:42:07] list test_list init

[22:42:07] list test_list add

[22:42:07] list test_list add tail

[22:42:07] list test_list del

[22:42:07] list test_list replace

[22:42:07] list_test list replace init
[22:42:07] list test_list swap

[22:42:07] [FAILED] list test_list del_init

[22:42:07]

[22:42:07]

[22:42:07]

[..]

[22:42:07] list test_list move

[22:42:07] list test_list for each

[22:42:07] list test_list for each_prev
[22:42:07] list test_list for each_safe
[22:42:07] list test_list for each_prev_safe
[22:42:07] list_test list for_each entry
[22:42:07] list test_list for each_entry reverse
[22:42:07]

[22:42:07] Testing complete. 36 tests run. 1 failed. 0 crashed.
[22:42:07] Elapsed time: 7.732s total, 0.001ls configuring, 3.550s

building, 0.000s running

Other neat tricks:

e KUnit can manage memory and resources
o Cleaned up on test exit (failure or success)
o Use, e.g., kunit_kzalloc()
e Parameterised and data driven tests
o We'll look at a bit more later
e Other useful assertion / expectation variants:

o KUNIT_EXPECT_STREQ(test, a, b): compares strings
o KUNIT_EXPECT * MSG(test, a, b, fmt, ...): provide a specific error message

e KUnit logging tools:

o kunit_log() macro will output log both to dmesg and to the test log in debugfs

What's changed?

KUnit since 5.5

KUnit first accepted upstream in Linux 5.5

Since then:

Module support & debugfs test output
Named resources

Improved TAP output / executor
KASAN integration

Parameterised test support
Continuous Integration support

Many misc. fixes

Lots of tests.

Module Support

KUnit tests can now be built into modules, and will run at module load time.
Useful for integrating with existing test systems.

Non-UML architectures.

Tests which need to access user memory.

Named resources

It's now possible to associate a named resource with a test, and have it
automatically cleaned up when the test completes (whether it succeeds or
fails)

e Also useful for storing test-specific metadata
o Used by the KASAN integration to expect specific KASAN failures

Improved TAP output / executor

e The first version of KUnit ran tests as initcalls()

o No centralised knowledge of what KUnit tests were built-in
o TAP output couldn't count number of tests

e KUnit tests now run via an 'executor' which calls tests explicitly as part of the
init process
o TAP output now includes the test summary line

KASAN integration

e If KASAN is enabled:

o Memory errors will cause tests to fail (if kasan_multishot enabled)

e KASAN's own tests largely ported to KUnit
o KUnit supports 'expecting' an invalid memory access
o Unlike previous tests, where output had to be compared manually to a 'known good' to get any
results, most tests can now report their own success/failure.
o Some tests yet to be ported:
m Access to user memory
m Stack traces under RCU, etc.

Parameterised Testing

e Run the same test code repeatedly with different inputs
o KUnit will collate the results.

e A'generator' function is used to allow number and value of inputs to be

determined at runtime.
e Useful for 'data driven testing', allowing test data to be read from a table (e.g.,

standardised test vectors), or generated from code.

static timestamp_expectation_to_desc(const struct timestamp_expectation *t,
*desc)

{
}

KUNIT_ARRAY_PARAM(ext4_inode, test_data, timestamp_expectation_to_desc)

strscpy(desc, t->test_case_name, KUNIT_PARAM_DESC_SIZE);

Continuous Integration

e Goal: ensure KUnit tests are not being broken by new changes upstream

e Support for running "all tests"
o The KUNIT_ALL_TESTS config option enables all tests with satisfied dependencies.
m Useful if you have an existing config, and want to test it.
o New kunit.py run --alltests option
m Uses make allyesconfig under UML to run as many tests as possible
m UML tends to break a bit: there's a list of broken configs which are disabled.

e KernelCl support
o Working, but not yet fully enabled. Runs kunit.py --alltests.

e Linaro LKFT

o Running KUnit tests on ARM and x86-64
o (Including KASAN tests, which don't work under UML yet!)

Tooling updates

e kunit_tool now supports running subtasks individually
o e.g. Building a kernel with .../kunit.py build
o The parser can be run on arbitrary input with .../kunit.py parse

e JSON output for test parsing
e Test results can be output in the JSON format used by KernelCl

e kunit_tool should no-longer pollute the source directory
o kunit_tool defaults to using .kunit as a build directory
o kunitconfig files are now .kunitconfig in the build directory (Thanks Andy Shevchenko)

e New naming guidelines for tests, suites, modules, etc:
o See Documentation/dev-tools/kunit/style.rst

https://www.kernel.org/doc/html/latest/dev-tools/kunit/style.html

New tests

Power Management / QOS
Multipath TCP: Crypto and Token
KASAN

KCSAN

Bitfields

Command-line parsing
Thunderbolt / USB4

|O Ports / Resources

And more...

The Future

Mocking and Hardware Testing

e Testing drivers is hard: need to intercept reads/writes to hardware
e \Ways to approach it:

o Refactor code to allow a "fake" interface to be passed in
o Forcibly intercept functions ("function mocking")
o Provide ways of intercepting access to platform IOMEM and similar
e KUnit has experimented with providing features to support this:
o "Class Mocking" — macros to generate ops structs, classes, OOP constructs
m An RFC of this is available
o "Function Mocking" — somewhat problematic interception of functions with weak linking

and/or ftrace
o "Platform Mocking" — implementing stub interfaces under UML, adding hooks, etc, to allow

fake devices

https://lore.kernel.org/linux-kselftest/CAGS_qxqSgcJaWAR6=382e0YYHAEtZg5UjgPGSf_5NzbO8W0T+g@mail.gmail.com/T/#m056544169318da634f043046ea811e056e7d285f

Skippable test support

e The (K)TAP specification allows tests to be programmatically skipped.
e Plan is to allow individual testcases (or entire suites) to be skipped if

prerequisites aren't met
o Doesn't count either as failure or success.
o A skipped test will not fail the entire suite.

e Prototype exists: hopefully this'll be added soon!

Bugfixes and tooling improvements

e Standardisation of output between KUnit and kselftest
o Tim Bird's proposed KTAP output format
o Reworking kunit_tool's parser to better support non-kunit TAP output
m e.g. nested subtests, flexibility in where directives are placed

e Improved tooling / processes for testing individual subsystems

o Support having separate kunitconfig files for individual subsystems.
o kunit_tool can then accept the path to a subsystem's config, and run these
o Work out a way for subsystem maintainers to request contributors run a specific set of tests
before sending patches.
m e.g. having a test script, a list of instructions in MAINTAINERS, etc.

e Tooling support for running tests against the current kernel
o By loading modules and using debugfs to read results.

Questions / Comments?

