
KUnit:
Past, Present, and Future

David Gow <davidgow@google.com>

What is KUnit?

What is KUnit?

● A unit testing framework for the Linux Kernel
○ Aimed at 'in-kernel' testing
○ Tooling to make writing and running tests easier.

● Designed for small, fast, self-contained tests
○ Think "a single kernel function"

● An effort to standardise such tests
○ Tests produce a common, machine parsable (K)TAP output format

● Can be run under any kernel architecture
○ Either built-in to the kernel to run at startup, or as a module
○ Can be run (with provided tooling) under User-Mode Linux (UML), as a normal x86-64 Linux

binary
■ Allows for extremely fast testing!

Where is KUnit?

● KUnit is included in Linux 5.5+
○ KUnit and KUnit tests can be enabled with Kconfig entries.
○ e.g. CONFIG_KUNIT and CONFIG_KUNIT_ALL_TESTS
○ A python wrapper which configures, builds, runs, and parses results included

■ ./tools/testing/kunit/kunit.py run
○ The in-kernel test framework lives:

■ lib/kunit/
○ Tests sit alongside the code being tested

■ (typically in a file ending _kunit.c, building a <thing>_kunit.ko module)
● KUnit documentation:

○ Documentation/dev-tools/kunit/index.rst
○ KUnit's website: https://kunit.dev/

https://www.kernel.org/doc/html/latest/dev-tools/kunit/index.html
https://kunit.dev/

How are tests structured?

● A test is a single function:
○ Runs some setup
○ Runs the code under test
○ Asserts the resultant state matches expectations

● Test suites:
○ A collection of related tests.
○ Can have shared initialisation / teardown code.

Example: list_test
lib/list-test.c:

static void list_test_list_move_tail(struct kunit *test)
{

struct list_head a, b;
LIST_HEAD(list1);
LIST_HEAD(list2);

list_add_tail(&a, &list1);
list_add_tail(&b, &list2);

/* before: [list1] -> a, [list2] -> b */
list_move_tail(&a, &list2);
/* after: [list1] empty, [list2] -> b -> a */

KUNIT_EXPECT_TRUE(test, list_empty(&list1));

KUNIT_EXPECT_PTR_EQ(test, &b, list2.next);

KUNIT_EXPECT_PTR_EQ(test, &a, b.next);
}

Example: suites
static struct kunit_case list_test_cases[] = {

KUNIT_CASE(list_test_list_init),
KUNIT_CASE(list_test_list_add),
KUNIT_CASE(list_test_list_add_tail),

[…]
KUNIT_CASE(list_test_list_for_each_prev_safe),
KUNIT_CASE(list_test_list_for_each_entry),
KUNIT_CASE(list_test_list_for_each_entry_reverse),
{},

};

static struct kunit_suite list_test_module = {
.name = "list-kunit-test",
.test_cases = list_test_cases,

};

kunit_test_suites(&list_test_module);

MODULE_LICENSE("GPL v2");

Running tests (with kunit_tool)

● Create a '.kunitconfig' file in the build directory ([srcdir]/.kunit by default)
○ Include the config options you need for testing:

■ CONFIG_KUNIT=y
■ CONFIG_LIST_KUNIT_TEST=y

● Run './tools/testing/kunit/kunit.py run'
○ If you want the raw kernel output in TAP format, rather than the parsed summary, use the

'--raw_output' option

Results (TAP format)

TAP version 14
1..1
 # Subtest: list-kunit-test
 1..36
 ok 1 - list_test_list_init
 ok 2 - list_test_list_add
 ok 3 - list_test_list_add_tail
 ok 4 - list_test_list_del
 ok 5 - list_test_list_replace
 ok 6 - list_test_list_replace_init
 ok 7 - list_test_list_swap
 […]
 ok 35 - list_test_list_for_each_entry
 ok 36 - list_test_list_for_each_entry_reverse
ok 1 - list-kunit-test

TAP version 14
1..1
 # Subtest: list-kunit-test
 1..36
 ok 1 - list_test_list_init
 ok 2 - list_test_list_add
 ok 3 - list_test_list_add_tail
 ok 4 - list_test_list_del
 ok 5 - list_test_list_replace
 ok 6 - list_test_list_replace_init
 ok 7 - list_test_list_swap
 # list_test_list_del_init: EXPECTATION FAILED at
lib/list-test.c:161
 Expected list_empty_careful(&a) to be true, but is false
 not ok 8 - list_test_list_del_init
 ok 9 - list_test_list_move
 ok 10 - list_test_list_move_tail
 ok 36 - list_test_list_for_each_entry_reverse
not ok 1 - list-kunit-test

Results (kunit_tool)
[22:49:46] Configuring KUnit Kernel …
[22:49:46] Building KUnit Kernel …
[22:49:52] Starting KUnit Kernel …
[22:49:57]
==
[22:49:57] ======== [PASSED] list-kunit-test ========
[22:49:57] [PASSED] list_test_list_init
[22:49:57] [PASSED] list_test_list_add
[22:49:57] [PASSED] list_test_list_add_tail
[22:49:57] [PASSED] list_test_list_del
[22:49:57] [PASSED] list_test_list_replace
[22:49:57] [PASSED] list_test_list_replace_init
[22:49:57] [PASSED] list_test_list_swap
[22:49:57] [PASSED] list_test_list_del_init
[22:49:57] [PASSED] list_test_list_move
[…]
[22:49:57] [PASSED] list_test_list_for_each
[22:49:57] [PASSED] list_test_list_for_each_prev
[22:49:57] [PASSED] list_test_list_for_each_safe
[22:49:57] [PASSED] list_test_list_for_each_prev_safe
[22:49:57] [PASSED] list_test_list_for_each_entry
[22:49:57] [PASSED] list_test_list_for_each_entry_reverse
[22:49:57]
==
[22:49:57] Testing complete. 36 tests run. 0 failed. 0
crashed.
[22:49:57] Elapsed time: 10.216s total, 0.001s
configuring, 6.069s building, 0.000s running

[22:41:59] Configuring KUnit Kernel …
[22:41:59] Building KUnit Kernel …
[22:42:03] Starting KUnit Kernel …
[22:42:07]
==
[22:42:07] ======== [FAILED] list-kunit-test ========
[22:42:07] [PASSED] list_test_list_init
[22:42:07] [PASSED] list_test_list_add
[22:42:07] [PASSED] list_test_list_add_tail
[22:42:07] [PASSED] list_test_list_del
[22:42:07] [PASSED] list_test_list_replace
[22:42:07] [PASSED] list_test_list_replace_init
[22:42:07] [PASSED] list_test_list_swap
[22:42:07] [FAILED] list_test_list_del_init
[22:42:07] # list_test_list_del_init: EXPECTATION FAILED at
lib/list-test.c:161
[22:42:07] Expected list_empty_careful(&a) to be true, but is
false
[22:42:07] not ok 8 - list_test_list_del_init
[…]
[22:42:07] [PASSED] list_test_list_move
[22:42:07] [PASSED] list_test_list_for_each
[22:42:07] [PASSED] list_test_list_for_each_prev
[22:42:07] [PASSED] list_test_list_for_each_safe
[22:42:07] [PASSED] list_test_list_for_each_prev_safe
[22:42:07] [PASSED] list_test_list_for_each_entry
[22:42:07] [PASSED] list_test_list_for_each_entry_reverse
[22:42:07]
==
[22:42:07] Testing complete. 36 tests run. 1 failed. 0 crashed.
[22:42:07] Elapsed time: 7.732s total, 0.001s configuring, 3.550s
building, 0.000s running

Other neat tricks:

● KUnit can manage memory and resources
○ Cleaned up on test exit (failure or success)
○ Use, e.g., kunit_kzalloc()

● Parameterised and data driven tests
○ We'll look at a bit more later

● Other useful assertion / expectation variants:
○ KUNIT_EXPECT_STREQ(test, a, b): compares strings
○ KUNIT_EXPECT_*_MSG(test, a, b, fmt, …): provide a specific error message

● KUnit logging tools:
○ kunit_log() macro will output log both to dmesg and to the test log in debugfs

What's changed?

KUnit since 5.5

KUnit first accepted upstream in Linux 5.5

Since then:

● Module support & debugfs test output
● Named resources
● Improved TAP output / executor
● KASAN integration
● Parameterised test support
● Continuous Integration support
● Many misc. fixes
● Lots of tests.

Module Support

● KUnit tests can now be built into modules, and will run at module load time.
● Useful for integrating with existing test systems.
● Non-UML architectures.
● Tests which need to access user memory.

Named resources

● It's now possible to associate a named resource with a test, and have it
automatically cleaned up when the test completes (whether it succeeds or
fails)

● Also useful for storing test-specific metadata
○ Used by the KASAN integration to expect specific KASAN failures

Improved TAP output / executor

● The first version of KUnit ran tests as initcalls()
○ No centralised knowledge of what KUnit tests were built-in
○ TAP output couldn't count number of tests

● KUnit tests now run via an 'executor' which calls tests explicitly as part of the
init process

○ TAP output now includes the test summary line

KASAN integration

● If KASAN is enabled:
○ Memory errors will cause tests to fail (if kasan_multishot enabled)

● KASAN's own tests largely ported to KUnit
○ KUnit supports 'expecting' an invalid memory access
○ Unlike previous tests, where output had to be compared manually to a 'known good' to get any

results, most tests can now report their own success/failure.
○ Some tests yet to be ported:

■ Access to user memory
■ Stack traces under RCU, etc.

Parameterised Testing

● Run the same test code repeatedly with different inputs
○ KUnit will collate the results.

● A 'generator' function is used to allow number and value of inputs to be
determined at runtime.

● Useful for 'data driven testing', allowing test data to be read from a table (e.g.,
standardised test vectors), or generated from code.

static void timestamp_expectation_to_desc(const struct timestamp_expectation *t,
 char *desc)

{
strscpy(desc, t->test_case_name, KUNIT_PARAM_DESC_SIZE);

}

KUNIT_ARRAY_PARAM(ext4_inode, test_data, timestamp_expectation_to_desc)

Continuous Integration

● Goal: ensure KUnit tests are not being broken by new changes upstream
● Support for running "all tests"

○ The KUNIT_ALL_TESTS config option enables all tests with satisfied dependencies.
■ Useful if you have an existing config, and want to test it.

○ New kunit.py run --alltests option
■ Uses make allyesconfig under UML to run as many tests as possible
■ UML tends to break a bit: there's a list of broken configs which are disabled.

● KernelCI support
○ Working, but not yet fully enabled. Runs kunit.py --alltests.

● Linaro LKFT
○ Running KUnit tests on ARM and x86-64
○ (Including KASAN tests, which don't work under UML yet!)

Tooling updates

● kunit_tool now supports running subtasks individually
○ e.g. Building a kernel with …/kunit.py build
○ The parser can be run on arbitrary input with …/kunit.py parse

● JSON output for test parsing
● Test results can be output in the JSON format used by KernelCI
● kunit_tool should no-longer pollute the source directory

○ kunit_tool defaults to using .kunit as a build directory
○ kunitconfig files are now .kunitconfig in the build directory (Thanks Andy Shevchenko)

● New naming guidelines for tests, suites, modules, etc:
○ See Documentation/dev-tools/kunit/style.rst

https://www.kernel.org/doc/html/latest/dev-tools/kunit/style.html

New tests

● Power Management / QOS
● Multipath TCP: Crypto and Token
● KASAN
● KCSAN
● Bitfields
● Command-line parsing
● Thunderbolt / USB4
● IO Ports / Resources
● And more…

The Future

Mocking and Hardware Testing

● Testing drivers is hard: need to intercept reads/writes to hardware
● Ways to approach it:

○ Refactor code to allow a "fake" interface to be passed in
○ Forcibly intercept functions ("function mocking")
○ Provide ways of intercepting access to platform IOMEM and similar

● KUnit has experimented with providing features to support this:
○ "Class Mocking" — macros to generate ops structs, classes, OOP constructs

■ An RFC of this is available
○ "Function Mocking" — somewhat problematic interception of functions with weak linking

and/or ftrace
○ "Platform Mocking" — implementing stub interfaces under UML, adding hooks, etc, to allow

fake devices

https://lore.kernel.org/linux-kselftest/CAGS_qxqSgcJaWAR6=382e0YYHAEtZg5UjgPGSf_5NzbO8W0T+g@mail.gmail.com/T/#m056544169318da634f043046ea811e056e7d285f

Skippable test support

● The (K)TAP specification allows tests to be programmatically skipped.
● Plan is to allow individual testcases (or entire suites) to be skipped if

prerequisites aren't met
○ Doesn't count either as failure or success.
○ A skipped test will not fail the entire suite.

● Prototype exists: hopefully this'll be added soon!

Bugfixes and tooling improvements

● Standardisation of output between KUnit and kselftest
○ Tim Bird's proposed KTAP output format
○ Reworking kunit_tool's parser to better support non-kunit TAP output

■ e.g. nested subtests, flexibility in where directives are placed
● Improved tooling / processes for testing individual subsystems

○ Support having separate kunitconfig files for individual subsystems.
○ kunit_tool can then accept the path to a subsystem's config, and run these
○ Work out a way for subsystem maintainers to request contributors run a specific set of tests

before sending patches.
■ e.g. having a test script, a list of instructions in MAINTAINERS, etc.

● Tooling support for running tests against the current kernel
○ By loading modules and using debugfs to read results.

Questions / Comments?

