
eBPF 101
An overview from a perspective of a non-kernel programmer

Muhammad Falak R Wani
falakreyaz@gmail.com

Linux Conf Au 2022

@vimfrw eBPF 101 LCA 22 1 / 22

falakreyaz@gmail.com

whoami1

I admit I am an imposter2

1mfrw.github.io
2Pretending to be a Linux Kernel Expert

@vimfrw eBPF 101 LCA 22 2 / 22

https://mfrw.github.io
https://medium.com/@c0ngwang/how-to-pretend-to-be-a-linux-kernel-expert-b1ca21ac6384

Agenda

1 History
Motivation
Problem
Solution – BPF

2 Foundations
eBPF Architecture
eBPF Prog Types
eBPF Maps

3 Conclusion

@vimfrw eBPF 101 LCA 22 3 / 22

Agenda

1 History
Motivation
Problem
Solution – BPF

2 Foundations
eBPF Architecture
eBPF Prog Types
eBPF Maps

3 Conclusion

@vimfrw eBPF 101 LCA 22 4 / 22

Let’s design a Packet Filter
How hard can that be?

Copy everything

to user-space

Write a Kernel

Module

@vimfrw eBPF 101 LCA 22 5 / 22

What is the Problem?
User Space vs Kernel Space Trade Off

User Space

We copy every packet to User
Space which is not the most
optimal solution.

Copies everything.

Not Optimal Performance.

Generic Solution.

SAFE – SEGFAULT.

Kernel Space

Hardcoding what packets that
we are interested in is not a
generic solution

Copy only what we want.

Optimal Performance.

Not a Generic Solution.

UNSAFE – System down.

What if we had best of both the worlds ?

— Anonymous Engineer

@vimfrw eBPF 101 LCA 22 6 / 22

What is the Problem?
User Space vs Kernel Space Trade Off

User Space

We copy every packet to User
Space which is not the most
optimal solution.

Copies everything.

Not Optimal Performance.

Generic Solution.

SAFE – SEGFAULT.

Kernel Space

Hardcoding what packets that
we are interested in is not a
generic solution

Copy only what we want.

Optimal Performance.

Not a Generic Solution.

UNSAFE – System down.

What if we had best of both the worlds ?

— Anonymous Engineer

@vimfrw eBPF 101 LCA 22 6 / 22

BPF
A seminal paper published in 1992

@vimfrw eBPF 101 LCA 22 7 / 22

BPF
A simple virtual machine residing in the kernel

@vimfrw eBPF 101 LCA 22 8 / 22

How Does a BPF program work?
Let’s take a digression first

How do userspace programs work ?

Compiled

Write Code → Compiler + Linker → Run the Binary

Interpreted

Write Code → Interpreter → JIT instruction → execute JIT-ed instructions

But wait the BPF VM is in the kernel!

@vimfrw eBPF 101 LCA 22 9 / 22

BPF
How does a BPF program run ?

BPF a.k.a Classical BPF (cBPF) programs are STATELESS.
Hook points are only in the Network Stack.

Write a simple program (Filter) using
the ISA.

Filter expressions return True/False.

Load the ByteCode program in the
kernel.

Attach the loaded program to a hook.
(e.g on every received packet)

Programs are event driven and are run
to completion when the event occurs.

Load Byte Code → Interpreter → Attach to Hook → Run BPF → Action

@vimfrw eBPF 101 LCA 22 10 / 22

Ideas Similar to BPF
Do not map 1:1 exactly – similar theme3

Embeded lua VM in nginx to modify behaviour
without recompiling nginx or writing C.

Embeded lua VM in neovim to write plugins and
extend functionality.

Vimscript for VIM to extend functionality.

Writing WebAssembly filters for envoy proxy.

WebAssembly for browsers.

3None of them have a verifier
@vimfrw eBPF 101 LCA 22 11 / 22

Agenda

1 History
Motivation
Problem
Solution – BPF

2 Foundations
eBPF Architecture
eBPF Prog Types
eBPF Maps

3 Conclusion

@vimfrw eBPF 101 LCA 22 12 / 22

eBPF Mascot
The cute Bee!

@vimfrw eBPF 101 LCA 22 13 / 22

extended BPF
BPF VM in the Linux Kernel got improved vastly

Alexei Starovoitov sent a patch improving the existing BPF infrastructure
in the kernel and as a result BPF → eBPF.

@vimfrw eBPF 101 LCA 22 14 / 22

extended BPF
eBPF is not limited to the network stack4

Recall cBPF had hooks only in the network stack. eBPF has hook points
all throughout the kernel.

4Image Courtesy: ebpf.io
@vimfrw eBPF 101 LCA 22 15 / 22

http://ebpf.io

eBPF Capabilities
Having a secure VM in the kernel has endless possibilities 5

Networking

Observability

Security

Tracing
5Image Courtesy: ebpf.io

@vimfrw eBPF 101 LCA 22 16 / 22

http://ebpf.io

eBPF Verifier & JIT
Loading and Attaching a eBPF program6

The bpf() syscall is a multi-tool which lets us load & attach an eBPF
program.

6Image Courtesy: ebpf.io
@vimfrw eBPF 101 LCA 22 17 / 22

http://ebpf.io

eBPF Program Types
Different kinds of eBPF programs

A non exhaustive list of BPF PROG *:

BPF PROG TYPE SOCKET FILTER: a packet filter

BPF PROG TYPE XDP: a packet filter run from device driver rx path

BPF PROG TYPE KPROBE: if a kprobe should fire or not

BPF PROG TYPE TRACEPOINT: if a tracepoint should fire or not

BPF PROG TYPE SOCK OPS: set socket options

BPF PROG

@vimfrw eBPF 101 LCA 22 18 / 22

eBPF MAPs
Saving State in eBPF Programs

Recall cBPF was entirely stateless. eBPF is stateless but has the capability
to access storage which are called eBPF MAPs. eBPF MAP is a generic
data structure that allows data to be passed back and forth withing the
kernel or between the user space and the kernel.
eBPF MAPS are created by the same bpf() syscall.

A few interesting BPF MAP TYPE *:

BPF MAP TYPE HASH: an actual hash table

BPF MAP TYPE ARRAY: an array

BPF MAP TYPE PROG ARRAY: an array of fd’s corresponding to
eBPF programs.

BPF MAP TYPE ...

@vimfrw eBPF 101 LCA 22 19 / 22

Agenda

1 History
Motivation
Problem
Solution – BPF

2 Foundations
eBPF Architecture
eBPF Prog Types
eBPF Maps

3 Conclusion

@vimfrw eBPF 101 LCA 22 20 / 22

Conclusion

eBPF programs run in response to events.

eBPF programs run to completion.

Running an eBPF program is much safer than running
and maintaining a kernel-module.

The entry bar to get useful information from the
kernel is significantly reduced.

The overhead of observability is applicable only when
you run dynamic instrumentation.

@vimfrw eBPF 101 LCA 22 21 / 22

Thank You!

@vimfrw eBPF 101 LCA 22 22 / 22

	History
	Motivation
	Problem
	Solution – BPF

	Foundations
	eBPF Architecture
	eBPF Prog Types
	eBPF Maps

	Conclusion

