Kernel Testing with KUnit:
Bridging the Gap

David Gow <davidgow@google.com>

s

Who am |?

Hello!
Using Linux full time since 2006
Developer on KUnit for the last 3 years

What are we discussing?

What, why, and how of testing?
KUnit and kselftest: what they are and when to use each.

What's changing and improved
o KTAP, QEMU support, Documentation

Where to from here?

What aren't we discussing?

Step-by-step how to write tests.

Testing, kselftest, and KUnit

Why (and How) Should You Test the Kernel?

Because you want it to work.

Security and Reliability bugs in the kernel are bad.
Regressions are bad.

Tests were written as ad-hoc test scripts and modules.

e KUnit and kselftest are standardise these tests.
e They're both in-tree: the tests are included (and kept in-sync with) the kernel.
e Being run automatically on a number of Cl systems.

What test framework should | use?

e Kkselftest: scripts that run from userspace

o Any kernel data / code needs to be exposed somehow
o Can easily set up state from userspace, run programs, etc

e KuUnit: the test code is part of the kernel

Can access internal kernel functions/data

More structured, smaller tests

"A single C function”

Difficult to write integration tests, particularly those which touch userspace.
Must be written in C (or maybe Rust)

O O O O O

Other Testing Tools

e Dynamic Analysis tools:

Sanitizers: KASAN, KCSAN, UBSAN, KFENCE, etc.
Leak checkers: kmemleak

Validators: lockdep

Don't run "tests", but identify unsafe behaviour

Can be run alongside KUnit/kselftest — integrations exist.

e Code coverage
o gcov
o kcov

e See the 'kernel testing guide' for more info:
o https://www.kernel.org/doc/html/latest/dev-tools/testing-overview.html

O O O O O

https://www.kernel.org/doc/html/latest/dev-tools/testing-overview.html

The Challenges Faced in 2021

Integration:

e kselftest and KUnit serve similar purposes, but there are reasons to use one
over the other in some circumstances.

e The same people need to use both.

e Porting tests from one to the other.

e The same systems (CI, tooling) want to aggregate results from both.

Feature Gaps:

e KUnit comes with a bunch of built-in tooling, but it was very KUnit-specific
e It only really worked under UML (User-Mode Linux).

The KTAP format

A Test Result Format

e A structured, machine-readable format for test results
o Tools can pretty-print and summarise output
o Cl systems can collate and correlate output from different runs.
o Still human-readable.

e TAP: the Test Anything Protocol

https://testanything.org/tap-version-13-specification.html
Simple

A bit too simple: no nested tests, etc

Every test extended it in a slightly different, incompatible way.

e We need an updated format.

o TAP14: Draft update to the spec.
o Abandoned.
o Some licensing weirdness.

e New one: KTAP — Kernel TAP

o A standardisation of what kselftest and KUnit are doing
o Still parsable by most existing tooling
o Some unnecessary stuff removed (embedded yaml)

O

o O O

https://testanything.org/tap-version-13-specification.html

Results (KTAP format)

KTAP version 1
1..1
KTAP version 1
1..36
ok 1 - list_test list _init
ok 2 - list_test_list add
ok 3 - list_test list add tail
ok 4 - list_test_list del
ok 5 - list_test list replace
ok 6 - list_test_list_replace init
ok 7 - list_test list swap
[...]
ok 35 - list_test list_for_each_entry
ok 36 - list_test list for_each_entry reverse
ok 1 - list-kunit-test

Results (KTAP format)

KTAP version 1
1.1

KTAP version 1

1.4

example _simple test: initializing

ok 1 - example_simple test

example_skip_test: initializing

ok 2 - example_skip_test # SKIP this test should be skipped

ok 3 - example_mark_skipped test # SKIP this test should be skipped
example _all _expect_macros_test: initializing

Oh, no! An error!

not ok 4 - example_all_expect_macros_test

example: pass:1 fail:1 skip:2 total:4
Totals: pass:1 fail:1 skip:2 total:4
not ok 1 - example

Parsing KTAP with KUnit

[16:
[16:
[16:
[16:
[16:
[16:
[16:
[16:
[16:
[16:
[16:

KUnit includes a parser for KTAP output
Jtools/testing/kunit/kunit.py parse

®

Accepts either a filename or stdin

Prints a nice summary:

55:
55:
55:
55:
55:
55:
55:
55:
:12]
55:
55:

55

12]
12]
12]
12]
12]
12]
12]
12]

12]
12]

=================== example (4 subtests) ===========

example simple test
[SKIPPED] example skip test
[SKIPPED] example mark skipped test
example all expect macros test: initializing
Oh no! An error!
[FATILED] example all expect macros_test

====—====—==—=—=——=—=—=== [FAILED] example =============

Testing complete. Passed: 1, Failed: 1, Crashed: O,

Skipped: 2, Errors:

0

QEMU

Architectures and Tooling

e KUnit works on all architectures supported by the kernel.
e Some of the KUnit tooling was UML-specific

e Kkunit_tool now has better support for other architectures

o Can now cross-compile
o KUnit comes with configs and QEMU scripts to run across many architectures

e Just add the --arch=[arch] option
e Also a --cross_compile option to pick a compiler manually

Architecture support

e |n addition to UML, we support the following out of the box:
o 386

x86_64

arm

armo64

alpha

powerpc

riscv

$390

sparc

e Don't see your architecture? No problem:
o Extra architectures can be defined in a python file.

O O O O O O O O

Other New Features

Since Last Year's LCA

Visit: https://kunit.dev/release notes.html

e Tests can now be SKIPped.
o Just use kunit_skip() or kunit_mark_skipped()
e Test statistics:
o Even if you're not using kunit_tool, counts of passed, failed, skipped, tests.

e UBSAN integration
e Drastically improved documentation
e A huge number of bug and usability fixes.

https://kunit.dev/release_notes.html

Since Last Year's LCA

Visit: https://kunit.dev/release notes.html

e _kunitconfig fragments:
o Each subsystem can now include a default .config for tests

e --kconfig_add:

o Add an extra kconfig option to the current kernel

e Test filtering
o Run only tests which match a glob

e Hermetic testing
o --run_isolated option allows suites/tests to be run on separate kernel invocations

https://kunit.dev/release_notes.html

New Tests!

In 5.11, we had 20 test suites (204 individual tests)

In 5.16, we have 40 test suites (324 individual tests)

@)

O 0O 0O 0O 0O 0O o0 O o0 O O o o o

Despite the introduction of parameterised tests merging a number of existing tests
New tests include:

timestamp conversions
KFENCE

ALSA SoC topology

ASPEED SDHCI phase tests
Thunderbolt / USB4

mptcp

s390 stack unwinding
command-line options parsing
DAMON (Data Access MON:itor)
SLUB memory allocator
memset/memcpy/memmove
kprobes

Maths functions

Hashing!

...and more!

80

60

40

20

== Unique contributors == Number of contributions
== Number of test authors

Number of test files

5.4

5.5

5.6

5.7

5.8

5.9

5.10

511

5.12

5.13

5.14

5.15

5.16

The Future

What's coming soon?

More KTAP standardisation fixes.

Improved support for running KUnit tests as modules.

More tests and test examples, particularly testing hardware.
Reduced memory usage (even further!)

Yet more bugfixes and documentation.

What do you want?

Have you used KUnit or kselftest?

|s anything blocking you from doing so?

What tests should you run for a subsystem? How would you know?
Would you want to get test results / know how a patch has been
tested?

e How much refactoring of code to make it testable is too much?

Questions / Comments?

