
Kernel Testing with KUnit:
Bridging the Gap

David Gow <davidgow@google.com>

Who am I?

● Hello!
● Using Linux full time since 2006
● Developer on KUnit for the last 3 years

What are we discussing?
● What, why, and how of testing?
● KUnit and kselftest: what they are and when to use each.
● What's changing and improved

○ KTAP, QEMU support, Documentation
● Where to from here?

What aren't we discussing?
● Step-by-step how to write tests.

Testing, kselftest, and KUnit

Why (and How) Should You Test the Kernel?

● Because you want it to work.
● Security and Reliability bugs in the kernel are bad.
● Regressions are bad.
● Tests were written as ad-hoc test scripts and modules.

● KUnit and kselftest are standardise these tests.
● They're both in-tree: the tests are included (and kept in-sync with) the kernel.
● Being run automatically on a number of CI systems.

What test framework should I use?

● kselftest: scripts that run from userspace
○ Any kernel data / code needs to be exposed somehow
○ Can easily set up state from userspace, run programs, etc

● KUnit: the test code is part of the kernel
○ Can access internal kernel functions/data
○ More structured, smaller tests
○ "A single C function"
○ Difficult to write integration tests, particularly those which touch userspace.
○ Must be written in C (or maybe Rust)

Other Testing Tools

● Dynamic Analysis tools:
○ Sanitizers: KASAN, KCSAN, UBSAN, KFENCE, etc.
○ Leak checkers: kmemleak
○ Validators: lockdep
○ Don't run "tests", but identify unsafe behaviour
○ Can be run alongside KUnit/kselftest — integrations exist.

● Code coverage
○ gcov
○ kcov

● See the 'kernel testing guide' for more info:
○ https://www.kernel.org/doc/html/latest/dev-tools/testing-overview.html

https://www.kernel.org/doc/html/latest/dev-tools/testing-overview.html

The Challenges Faced in 2021

Integration:

● kselftest and KUnit serve similar purposes, but there are reasons to use one
over the other in some circumstances.

● The same people need to use both.
● Porting tests from one to the other.
● The same systems (CI, tooling) want to aggregate results from both.

Feature Gaps:

● KUnit comes with a bunch of built-in tooling, but it was very KUnit-specific
● It only really worked under UML (User-Mode Linux).

The KTAP format

A Test Result Format

● A structured, machine-readable format for test results
○ Tools can pretty-print and summarise output
○ CI systems can collate and correlate output from different runs.
○ Still human-readable.

● TAP: the Test Anything Protocol
○ https://testanything.org/tap-version-13-specification.html
○ Simple
○ A bit too simple: no nested tests, etc
○ Every test extended it in a slightly different, incompatible way.

● We need an updated format.
○ TAP14: Draft update to the spec.
○ Abandoned.
○ Some licensing weirdness.

● New one: KTAP — Kernel TAP
○ A standardisation of what kselftest and KUnit are doing
○ Still parsable by most existing tooling
○ Some unnecessary stuff removed (embedded yaml)

https://testanything.org/tap-version-13-specification.html

Results (KTAP format)

KTAP version 1
1..1
 KTAP version 1
 1..36
 ok 1 - list_test_list_init
 ok 2 - list_test_list_add
 ok 3 - list_test_list_add_tail
 ok 4 - list_test_list_del
 ok 5 - list_test_list_replace
 ok 6 - list_test_list_replace_init
 ok 7 - list_test_list_swap
 […]
 ok 35 - list_test_list_for_each_entry
 ok 36 - list_test_list_for_each_entry_reverse
ok 1 - list-kunit-test

Results (KTAP format)

KTAP version 1
1..1

KTAP version 1
1..4
example_simple_test: initializing
ok 1 - example_simple_test
example_skip_test: initializing
ok 2 - example_skip_test # SKIP this test should be skipped
ok 3 - example_mark_skipped_test # SKIP this test should be skipped
example_all_expect_macros_test: initializing
Oh, no! An error!
not ok 4 - example_all_expect_macros_test

example: pass:1 fail:1 skip:2 total:4
Totals: pass:1 fail:1 skip:2 total:4
not ok 1 - example

Parsing KTAP with KUnit

● KUnit includes a parser for KTAP output
● ./tools/testing/kunit/kunit.py parse

○ Accepts either a filename or stdin
● Prints a nice summary:

[16:55:12] ==
[16:55:12] =================== example (4 subtests) ===================
[16:55:12] [PASSED] example_simple_test
[16:55:12] [SKIPPED] example_skip_test
[16:55:12] [SKIPPED] example_mark_skipped_test
[16:55:12] # example_all_expect_macros_test: initializing
[16:55:12] # Oh no! An error!
[16:55:12] [FAILED] example_all_expect_macros_test
[16:55:12] ===================== [FAILED] example =====================
[16:55:12] ==
[16:55:12] Testing complete. Passed: 1, Failed: 1, Crashed: 0, Skipped: 2, Errors: 0

QEMU

Architectures and Tooling

● KUnit works on all architectures supported by the kernel.
● Some of the KUnit tooling was UML-specific
● kunit_tool now has better support for other architectures

○ Can now cross-compile
○ KUnit comes with configs and QEMU scripts to run across many architectures

● Just add the --arch=[arch] option
● Also a --cross_compile option to pick a compiler manually

Architecture support

● In addition to UML, we support the following out of the box:
○ i386
○ x86_64
○ arm
○ arm64
○ alpha
○ powerpc
○ riscv
○ s390
○ sparc

● Don’t see your architecture? No problem:
○ Extra architectures can be defined in a python file.

Other New Features

Since Last Year's LCA

Visit: https://kunit.dev/release_notes.html

● Tests can now be SKIPped.
○ Just use kunit_skip() or kunit_mark_skipped()

● Test statistics:
○ Even if you're not using kunit_tool, counts of passed, failed, skipped, tests.

● UBSAN integration
● Drastically improved documentation
● A huge number of bug and usability fixes.

https://kunit.dev/release_notes.html

Since Last Year's LCA

Visit: https://kunit.dev/release_notes.html

● .kunitconfig fragments:
○ Each subsystem can now include a default .config for tests

● --kconfig_add:
○ Add an extra kconfig option to the current kernel

● Test filtering
○ Run only tests which match a glob

● Hermetic testing
○ --run_isolated option allows suites/tests to be run on separate kernel invocations

https://kunit.dev/release_notes.html

New Tests!

● In 5.11, we had 20 test suites (204 individual tests)
● In 5.16, we have 40 test suites (324 individual tests)

○ Despite the introduction of parameterised tests merging a number of existing tests
● New tests include:

○ timestamp conversions
○ KFENCE
○ ALSA SoC topology
○ ASPEED SDHCI phase tests
○ Thunderbolt / USB4
○ mptcp
○ s390 stack unwinding
○ command-line options parsing
○ DAMON (Data Access MONitor)
○ SLUB memory allocator
○ memset/memcpy/memmove
○ kprobes
○ Maths functions
○ Hashing!

● …and more!

The Future

What's coming soon?

● More KTAP standardisation fixes.
● Improved support for running KUnit tests as modules.
● More tests and test examples, particularly testing hardware.
● Reduced memory usage (even further!)
● Yet more bugfixes and documentation.

What do you want?

● Have you used KUnit or kselftest?
● Is anything blocking you from doing so?
● What tests should you run for a subsystem? How would you know?
● Would you want to get test results / know how a patch has been

tested?
● How much refactoring of code to make it testable is too much?

Questions / Comments?

